

NOVEMBER 1ST 6-7PM NHB 1.720

When studying Ochem -> Call a NIRRS

Learn each of these things for every

reaction -> then you will be able to

predict mechanisms and therefore products

Nature of the reaction; what is the starting material/product? (i.e. alkene converted to an alcohol)

Intermediate (or "Important transition state" if applicable) of the reaction, the key to the mechanism (carbocation, halonium ion, etc.)

Reagents Learn the exact way to designate the reagents for each reaction

Regiochemistry What is the regiochemistry of addition? (Markovnikov, non-Markovinikov, etc.)

Stereochemistry of addition (anti, syn or mixed)

Alkene HX Haloalkane

Carbocation

Markovnikov

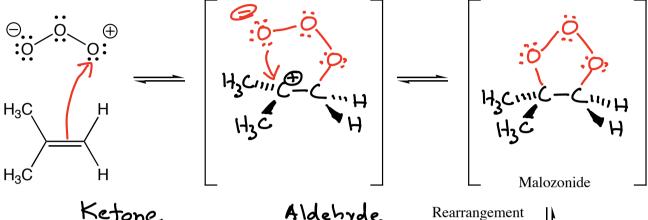
Mixed

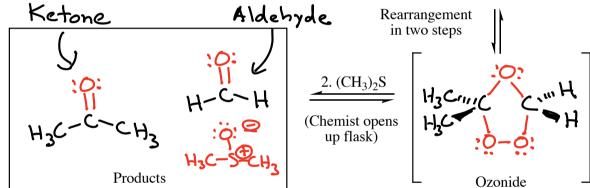
Alkene H2O Alcohol

H2SOy

(catalytic
amount)

Carbocation


Markovnikov


Mixed

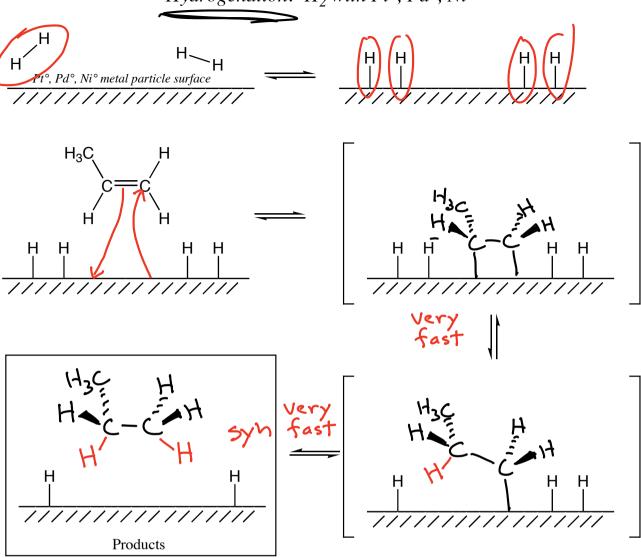
Alkene 1. BH3
2. H,O2/HO Alcohol
Four-membered
ring transition state
non-Markovnikov
Syn

This breaks C=C bonds !!!

Ozonolysis Partial Mechanism

Summary: Reaction of an alkene with O3 gives a malozonide than an ozonide intermediate (the C=C pi bond then C-C sigma bond is broken). Adding (CH3)2S decomposes the ozonide into ketone and aldehade products Breaks C=C bond!

Regiochemistry: N/A


Stereochemistry: N/A

Dzonolysis is the only reaction that breaks C=C bonds!

1)
$$\sqrt{\frac{1.0_3}{2.(CH_3)_2S}}$$
 $\sqrt{\frac{3}{2}}$ H H

Notice the numbers!

Hydrogenation: H_2 with Pt° , Pd° , Ni°

Summary: Hz adsorbs onto the metal surface.

The alkene adsorbs onto the metal surface.

H atoms transfer to both C atoms ->

on the same face -> before the C-C bond rotates

 Examples:

$$\frac{H_2}{Pd^{\circ}}$$

$$\frac{H_2}{Pd^{\circ}}$$

$$\frac{H_2}{Pd^{\circ}}$$

$$\frac{H_2}{H^{\circ}}$$

Important définitions for organic chemistry

Oxidation Reaction -> Net loss of electrons

A reaction involving loss of bonds
to H atoms and/or increase in
the number of TV bonds or bonds
to O atoms

Reduction Reaction > Net gain of electrons

A reaction involving an increase
in bonds to H atoms and/or
a decrease in the number of

A bonds or bonds to O atoms

CH3CH=CH2 reduction

Oxidation reduction

OH OH oxidation

CH3CH-CH2 reduction

CH3CH-CH2 reduction

CH3CH-CH2 reduction

Exam 2 will not cover anything below the line

You do not need to know this next reaction, but I am going to show it to you for reference

Example:

1.Hg(OAc)2,H20

2. NaBHy

Racemic

Alkanes -> similar to alkenes because

of the pi bonds.

Done big difference

Terminal alkanes are relatively acidic

NaNH2

NaNH2

CH3-C=C-H + NaP:NH2 => CH3-C=C: +:NH3

PKa=25

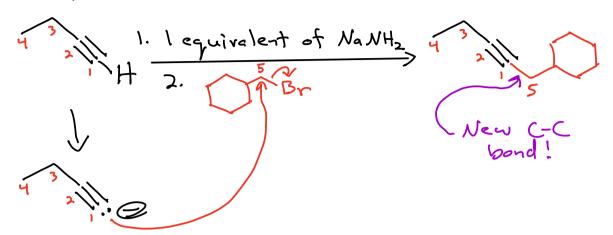
"wicked strong pKa=38

base"

Epic New Reaction

CH3-C=C: + CH3CH2CH2 Br: CH3-C=C-CH2CH2CH3 + :Br:

A primary
haloalkane



Time capsule: This is an $S_N 2$ reaction. The haloalkane must be primary to avoid an E2 reaction.

Making (-C bonds allows us to construct larger molecules from smaller ones!

A major goal of organic synthesis

Example:

